题目描述
题目链接:200. 岛屿数量
给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例1:
1 2 3 4 5 6 7
| 输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] 输出:1
|
示例2:
1 2 3 4 5 6 7
| 输入:grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] 输出:3
|
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
的值为 '0'
或 '1'
我的题解
主要思路
这道题的思路非常直观,很容易让人想到以当前坐标出发,遍历到岛屿边界,并将结果+1即可。值得注意的地方是遍历过的坐标无需再遍历,因此我们可以设置一个标识变量来记录,当然这里我就直接改变原数组,也能达到最终效果。下面以深度遍历和广度遍历两种方法实现:
方法一:深度遍历
思路
见主要思路
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| class Solution { public int numIslands(char[][] grid) { int m = grid.length; int n = grid[0].length; int result = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == '1') { dfs(grid, i, j); result++; } } } return result; }
private void dfs(char[][] grid, int i, int j) { if (i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == '0') { return; } grid[i][j] = '0'; dfs(grid, i - 1, j); dfs(grid, i, j + 1); dfs(grid, i + 1, j); dfs(grid, i, j - 1); } }
|
结果
执行用时:2 ms, 在所有 Java 提交中击败了100.00%的用户
内存消耗:49.7 MB, 在所有 Java 提交中击败了61.75%的用户
方法二:广度遍历
思路
见主要思路
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
| class Solution { public int numIslands(char[][] grid) { int m = grid.length; int n = grid[0].length; int result = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == '1') { bfs(grid, i, j); result++; } } } return result; }
private void bfs(char[][] grid, int i, int j) { Queue<int[]> queue = new ArrayDeque<>(); grid[i][j] = '0'; queue.offer(new int[]{i, j}); while (!queue.isEmpty()) { int[] poll = queue.poll(); int x = poll[0]; int y = poll[1]; if (x - 1 >= 0 && grid[x - 1][y] == '1') { grid[x - 1][y] = '0'; queue.offer(new int[]{x - 1, y}); } if (y + 1 < grid[0].length && grid[x][y + 1] == '1') { grid[x][y + 1] = '0'; queue.offer(new int[]{x, y + 1}); } if (x + 1 < grid.length && grid[x + 1][y] == '1') { grid[x + 1][y] = '0'; queue.offer(new int[]{x + 1, y}); } if (y - 1 >= 0 && grid[x][y - 1] == '1') { grid[x][y - 1] = '0'; queue.offer(new int[]{x, y - 1}); } } } }
|
结果
执行用时:4 ms, 在所有 Java 提交中击败了33.41%的用户
内存消耗:48.7 MB, 在所有 Java 提交中击败了96.37%的用户